So what forms the basis - what are the necessary conditions for us to lose fat? To lose fat you must create a calorie deficit. Simply put, a calorie deficit refers to consuming less energy (i.e. food) than your body requires or expends in a given period of time (typically measured within a 24 hour period). Now, the common MISTAKE made by dieters and CICO “deniers” is assuming that CALORIES IN literally refers only to the total (known) numerical value of calories eaten/drank and that CALORIES OUT literally refers only to calories “burned” through exercise - and for some slightly more acquainted with bioenergetics, resting metabolic rate.
CALORIES IN Calories-In is relatively simple: it’s the food you digest. However, the calorie content of food is imperfectly determined and calorie availability can vary between species/variety/source and even due to the degree of processing involved. These are small inconsistencies, but inconsistencies nonetheless. For example, dietary fiber cannot be digested through typical enzymatic action in our small intestine (we do not produce cellulase). So even though fiber HAS calories, it doesn't mean we "absorb" those calories. However, gut flora in our large intestine can - through fermentation - convert fiber into short-chain fatty acids. Those SCFA can translocate from the intestinal lumen into circulation, yielding calories. Thus, the composition of your gut flora influences your CALORIES IN, and that composition differs between people, and across your lifespan. CALORIES OUT This gets more complicated. CALORIES OUT is not simply represented by what the treadmill tells you. You inhabit a living body that, whether you are conscious of the fact or not, is perpetually dependent on energy availability. In short, CALORIES OUT may be summed up as:
IMPORTANT CAVEATS:
So was this client actually in a caloric deficit when she came to me? According to the equation, yes - according to real-life, NO! By definition, because she was not losing weight she was NOT in a caloric deficit. It's important to remember that equations are crude estimations of calorie needs, and just exactly how efficiently individuals digest and utilize/partition the food molecules they eat is unique to them. Activities like resistance training stimulate muscle protein synthesis (MPS) to a large enough degree that we can actually see its effect in 1-2 months - which is pretty amazing to think about! The food you eat literally forms the essential elements of contractile muscle! Because we created a demand for protein and energy (in the molecular form of ATP), we robbed her adipose (fat cells) to maintain, build, and repair actively trained muscles. Training created the deficit, but it also told her body what to do with her food: Burn the Fat, Feed the Muscle!
0 Comments
Do you have a good understanding of why your diet didn't work, or why it may have worked initially but you couldn't sustain it? Millions of people diet, and dieting is a Billion dollar if not Trillion dollar industry. The culture of body image and weight loss means big bucks for people looking to capitalize by marketing diet products and programs. You've probably tried a few different diets and achieved similar results, or perhaps you experienced divergent results but a common regression to your original starting point - perhaps you ended up gaining more than you lost. This is a common problem. It's been said that we don't have trouble losing weight - people do it everyday. Rather, we have trouble keeping weight off. Why? The reason.... Please watch, listen, and share the video lecture. Fitness is not a routine, fitness is the pursuit of excellence. Quit the enter(train)ment.5/29/2019
"I'm so unmotivated", "I need a new routine", "I need something different", "I got bored of my old program"...
Do these sentiments sound familiar? I hear this stuff all the time, and it's one of the many things that drive me batty. I've been training for over 20 years, and I've been training others for just over a decade, so believe me when I tell you I've heard it all. I know how the average person perceives exercise; I know their good habits and I know their bad habits; I know why most people start and stop exercising; I know the success and failure rates; I know what separates them from me. I know this from experience, and I know this from the abundance of exercise physiology, psychology, behavioural, and epidemiological research. There's always some new article or book that convinces people of the obscure missing piece to their daily regimen that will magically be the one thing that sends them over the top of whatever obstacle(s) have been keeping them back. But I, as well as the scads of coaches who actually work with people one on one (not just write books or articles), know that those who fail to accomplish their goals, whether fitness-based or otherwise - do so because they neglect the fundamentals, the basics - not the nuances. Fundamentals account for 90-95% of success, whereas nuances are largely unnecessary components of the bigger picture. A machine can be "finely tuned", but it can nonetheless perform its job as directed without fine tuning. Fine tuning just means it does the job with less wasted energy. The irony when it comes to a goal like weight-loss is that wasted energy IS the goal. The less efficient you are, the more energy you expend, and the more weight you lose. In contrast, getting fitter is a process of becoming more efficient at a given task - whether physically (e.g. stronger muscles move weight easier), or physiologically (e.g. more and larger mitochondria and RBC's allow you to use oxygen more efficiently). This is why, in part at least, you find it difficult to maintain your weight-loss momentum from month to month. You've picked all the low-hanging fruit (the easy weight), and now you have to work a bit harder and/or longer to get more weight off. If you have a fitness goal, which also accomplishes health goals by proxy, you only need to worry about doing the basics, repeatedly, over a long enough timeline to see your goals through, and with the intent of doing so as best you can while acknowledging that you can always improve:
Do NOT worry about silly, dichotomous thinking and biohacking BS such as:
We need to stop this nonsense. These examples are all indicative of behaviour that attempts to circumvent long term commitment to the process, in favour of an easier way to the prize. There isn't one. This is true in life, as well as fitness. For this reason, I find it typical that those who fall for these shortcuts and empty promises of success without effort tend to display a similar kind of half-assed approach to their jobs and home life. Your "new routine" should be seeing your current routine through to the end. Are you bored with progress? If you are bored it's because you're just going through the motions, and in the beginning that was enough to keep you interested. If you're bored it's because you never identified what your goals were, and thus you don't know why you started your routine in the first place. That or you need a reminder - progress is the goal, not entertainment. How you do fitness, is how you do life, work, and family - "If you don't have time to do it right, when will you have time to do it over?" - John Wooden ![]() I think most of understand that the immune system is the gatekeeper of our health. It protects us against the proliferation of pathogenic microorganisms like bacteria, viruses, and fungi but is also involved in tissue repair following injury. Our immune systems, much like other expressions of our physiology, possess adaptive function. For example, once infected by a pathogen, adaptive immunity engages, developing specificity (antibodies) against those foreign bodies (antigens) as well as "memory" to mount a more efficient defense should the same pathogen return. In some circumstances, our immune system can become functionally depressed (immunodepression), which can leave us more prone to infection. Such circumstances include heavy training schedules coupled with the rigorous demands of competition (e.g. stress of expectations, dieting to make weight, overuse of stimulants, and interrupted sleep schedule), and overall unbalanced diet. Chances are that if these circumstances describe your training routine, then you could be a prime candidate for immunodepression. So what does some of the research indicate? Peters and Bateman (1983) and Niemen et al. (1990) both described a 2 to 6-fold frequency of self-reported upper respiratory tract infections (URTI) in athletes who competed in long-distance foot races. Mechanistically, acute bouts of physical exercise produce physiological reactions similar to the presence of infection: an increase in circulating white blood cells (proportionate to exercise duration and intensity), and increases in leukocyte modulators (e.g. acute phase proteins). Hormones with immunomudulatory effects are also released in response to exercise (e.g. adrenaline, cortisol, GH, and prolactin). After prolonged exercise, immunoglobulin and B-lymphocyte suppression occurs, creating a possible "window of opportunity" for ambient pathogens (Pederson and Bruunsgard 1995). There are several angles from which training, particularly endurance training, affects our immune system, such as:
CHRONIC STRESS Leukocytes comprise the bulk of the immune system in form and function. Repeated bouts of intense or prolonged exercise, and the stress it incurs, can suppress their circulating numbers and functional capacities. Drops in circulating glutamine have also been suggested as a cause for immunodepression, though this has not been sufficiently validated. Muscle damage induced inflammation may also be a factor. An increase in gut permeability may permit entry of gut bacterial endotoxins into circulation, though this is most only of concern with prolonged exercise in hot conditions. The increased rate and depth of breathing may increase exposure to airborne bacteria and viruses, particularly in crowded, poorly ventilated environments. NUTRIENT DEFICIENCY Studies suggest that exercise increases nutrient utilization, and thus their requirements (i.e. amount needed to maintain health). Nutrients however can be further divided more specifically into macronutrients (required in large quantity, i.e. >3g) and micronutrients (required in minute quantity, i.e. <3g). With a balanced diet, sufficient intake of both macronutrients and micronutrients is hard to screw up. However, exclusion diets or very low-calorie diets can create deficiencies in either group. Whether or not a "normal" diet is sufficient to accommodate these increased requirements is likely highly individual and dependent on the duration and type of training involved. There is not a lot of evidence pointing to potential inadequacy in athletic groups, except in those athletes who are dieting or who fail to consume a well-balanced diet. That being said, it is thought that marginal deficiencies of vitamins in sedentary individuals may elicit small effects, but that those effects are amplified in highly active athletes. Exercise may induce deficiencies through decreased absorption in the G.I. tract, increased sweat and urination, increased nutrient turnover, and bio-chemical adaptations to training (i.e. the faster and further you drive, the more fuel you need). FAT SOLUBLE VITAMINS (A, D, E, K) As long as you are not actively avoiding the following foods or food groups, you will not find yourself at risk of a deficiency. Furthermore, fat-soluble vitamins are retained in your own fatty tissues, making deficiency less likely compared to the water-soluble vitamins. Vitamins A and E are required for normal immune function.
WATER-SOLUBLE VITAMINS (B1, B2, B3, B6, B12, C, Folic Acid, Biotin, Pantothenic Acid) Of the following vitamins, B12 and Folic acid are directly involved in the formation of leukocytes (white blood cells) that defend the body against infection, with Ascorbic Acid (Vit C) being required for their normal functioning.
The RDA for the above nutrients is set to cover about 97% of all healthy individuals who consume a "normal" diet. However, it is also a couple of deviations off the actual requirement to avoid deficiency. In other words, you can come up short of the RDA for any of these vitamins, and not actually be in danger of a deficiency. This buffer allows for some genetic variation between people, including differences in age, gender, and size. I think it should also be mentioned that missing the RDA one day and hitting it the next is normal and healthy, and you should not fuss about maintaining those levels each and every day. MICRO and MACROMINERALS At least 20 minerals are known to be essential to humans, with 14 trace elements being essential to maintaining health. The seven macrominerals are potassium, sodium, chloride, calcium, magnesium, phosphorus and sulfur, with copper, zinc, and iron representing some of the more familiar trace elements. Of the minerals essential to health, a deficiency in any the following are known to impair immune function, slow healing, or increase infections in humans:
Again, unless you purposely avoid any of the food examples listed above, deficiency in any of their associated minerals is rare. However, as said before, athletes engaged in strenuous activity do have increased demands. Regular exercise, especially in hot environments, incurs increased losses of multiple minerals in sweat and urine. Iron and Zinc deficiencies are not uncommon, and Iron losses in sweat can be as high as 0.3 mg iron / L of sweat. Sweat production can be 2L / hour in hot conditions. An athlete training for 2 hours in such conditions could lose 1.2 mg of iron. Note that the RDA for Iron is set at 8 mg (18 mg for females), however the absorption rate of Iron in the gut is only about 10%. This would require an additional 12 mg of additional dietary Iron to recoup losses due to sweat, essentially doubling an athletes daily requirement (from 8 mg to 20 mg). All that said, recorded Iron losses in sweat vary greatly. Another thing to consider is that well-trained athletes have well-trained muscles possessing adaptations such as increased myoglobin concentration and red cell mass. Such adaptations may further increase the requirement for Iron. It would not be a great stretch to suggest that athletes with or in pursuit of larger muscles (hypertrophy) would naturally retain more Iron, justifying supplementation. A word of caution: Contrary to other minerals for which excess intake is balanced by increased urinary excretion, Iron can build up to toxic levels easily in the body when intake exceeds requirements. Unless you are chronically anemic or have difficulty utilizing Iron from your diet, supplementation may not be warranted, even for athletes. LOW-CARB DIET Studies have demonstrated that subjects performing prolonged exercise on a low-carb diet (<10% of dietary energy) for several days, have markedly higher stress hormone and cytokine responses compared to moderate and high-carb diets (Gleeson et al. 1998; Mitchell et al. 1998). Consuming carbohydrate during exercise attenuates several markers of stress and immunodepression, such as rising cytokines, cortisol, and epinephrine (Nehlsen-Cannarella et al. 1997); neutrophil:lymphocyte ratio; and slows T-cell diminution (Henson et al. 1998). It should be stated that glucose is an important fuel source for immune cells, which have high metabolic rates. PROTEIN DEFICIENCY An overemphasis on carbohydrate consumption, combined with inadequate caloric intake, can potentiate a protein deficiency in athletes, for whom an increased protein requirement has been well-established. The T-cell system is highly dependent on sufficient amino acid availability. Protein energy malnutrition (PEM) depresses the number of fully-matured T-lymphocytes, impairs phagocytic cell function, and decreases cytokine production. A lot of noise has been made over the decades regarding glutamine, over-training, and immune health, and reductions in circulating glutamine do occur as a consequence of prolonged exercise. However, despite maintaining plasma glutamine concentration, the evidence to show that oral supplementation of glutamine actually affects immune function perturbations is lacking (Rohde et al. 1998; Walsh et al. 2000). Sure enough, a review by Hiscock and Pederson in 2002 concluded that falls in plasma glutamine concentration are not related to immunodepression. Regardless, an additional intake of 20-30g of protein per day can restore depressed plasma glutamine levels in overtrained athletes. Hooray for protein! As a quick aside, intakes of many micronutrients beyond specific thresholds reduce immune responses. The best approach is to eat a well-balanced diet, eat enough calories to support training needs, avoid training longer than 2 hours or consider a carbohydrate/protein supplement during your session, take days off, get enough sleep, and monitor mood and fatigue levels throughout your training season. Resources: Jeukendrup, Asker E, and Michael Gleeson. Sport Nutrition: An Introduction to Energy Production and Performance. Champaign, IL: Human Kinetics, 2010. Print. Tell us what you put in your shake or smoothie and snap a pic! #coach.solly #sollylama @ballisticstrength
|
NANAIMO'S BEST kettlebell group, strength & fitness classes | (250) 713-1262
CategOries
All
Archives
September 2023
|